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Abstract 

A fast Gauss-Seidel least-squares procedure (FGLS) 
has been developed for crystallographic refinement of 
atom parameters in large asymmetric units. The 
procedure combines the minimum matrix requirements 
and the rapid convergence of the Gauss-Seidel 
algorithm with rigid-group constraint and subsidiary 
parameter elastic restraint capabilities. As the pro- 
cedure is essentially block diagonal, considerable 
computational efficiency is achieved by determining 
contributions from one atom to all reflections at a time, 
instead of the usual practice of determining the 
contributions from all atoms to each reflection in turn. 
Application of the method to a 1104-atom protein at 
2.5 A resolution is described. 

Introduction 

Until recently, use of structure factor least-squares 
(SFLS) methods in the refinement of macromolecular 
structures has been limited by the prohibitive comput- 
ing effort required. Watenpaugh, Sieker, Herriott & 
Jensen (1973) successfully refined a 558-atom model of 
rubredoxin by adjusting individual-atom coordinates 
and thermal parameters, but at substantial cost 
(Watenpaugh, 1973). The magnitude of the problem 
required the partitioning of the normal equations matrix 
into ten blocks along the diagonal, each block 
containing over 200 parameters. The conventional, and 
much less costly, individual-atom block-diagonal 
method was found inapplicable, since the low resolution 
caused neighboring atoms to be strongly correlated. 

Konnert (1976) improved the conventional block- 
diagonal approximation to the full normal matrix by 
including all off-diagonal matrix elements relating 
parameter pairs for which he had assigned a subsidiary 
(elastic) restraining condition (Waser, 1963). By 
incorporating distance restraints between atoms in the 
system of observational equations, it was possible to 
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retain chemically reasonable stereochemistry even while 
using a limited subset of the reflection data. Konnert 
(1976) demonstrated the convergence properties of the 
method in the refinement of the 2436 atomic positional 
parameters of carp calcium-binding protein with 
respect to only 1370 reflection data plus 2030 distance 
restraints. 

Certain molecular fragments, e.g. various peptide 
and side-chain units, may have geometries which are 
well established and should be maintained, at least in 
the initial refinement. The imposition of these rigid- 
body constraints is described by Scheringer (1963) as 
having the advantages of improving the radius and rate 
of convergence, allowing the use of model groups 
known to greater accuracy than can be determined 
from the data, and, in the case of the usual full-matrix 
refinement, substantially reducing the cost. Sussman, 
Holbrook, Church & Kim (1977) incorporated rigid- 
group constraints into the conditional SFLS method 
(Waser, 1963), and described a successful refinement of 
yeast phenylalanine tRNA by initially subdividing the 
1652-atom model into 132 constrained (rigid) groups 
linked together by subsidiary (elastic) distance 
restraints. This reduced the number of variable posi- 
tional parameters to 888 rather than the 4956 required 
for the individual atoms. 

To reduce the effort of constructing the matrix, the 
procedures of Konnert (1976) and Sussman et al. 
(1977) utilize the 'sparse' matrix, evaluating only those 
matrix elements involving parameters of the same atom 
(constrained group) or between atoms (groups) having 
at least one restraint in common. All other elements are 
assumed to be small and are set to zero. If the 
conjugate gradient method (Hestenes & Stiefel, 1952) 
of solving linear equations is used, only the non-zero 
matrix elements need be stored with a substantial 
saving in the memory requirements. 

An alternative procedure, initially developed for 
large non-protein structures (Hoard & Nordman, 
1974), is the fast Gauss-Seidel least-squares (FGLS) 
routine. The basic approach of the Gauss-Seidel 
method, as used in the present procedure, is to form 
and solve the normal equations of a structural unit, e.g. 
an atom or a rigid group, and utilize these new 
© 1979 International Union of Crystallography 
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estimates of the unit parameters to update the cal- 
culated structure factors before forming the equations 
for the next structural unit. Thus all remaining units are 
cognizant of the shifts applied to the parameters of 
units treated earlier in the refinement sequence. This 
method, first proposed for individual-atom refinement 
by V. Schomaker and J. Waser (Sparks, 1961), is 
stated by Sparks (1961) to be the most rapidly 
convergent of the various block least-squares refine- 
ment techniques he compared. The contributions from 
subsidiary conditions are accommodated readily into 
the derivative matrix and vector to make this a 
conditional SFLS method. The computational 
efficiency of the procedure can be optimized by noting 
the sequential manner in which the atoms are treated. 
Ahmed & Cruickshank (1953) described a procedure 
for calculating structure factor contributions for all 
reflections from each atom at a time, which was 
considerably faster than the conventional procedure of 
calculating contributions from all atoms to each 
reflection. Extending the procedure to the least-squares 
process was considered by Cruickshank, Pilling, 
Bujosa, Lovell & Truter (1961), but was not implemen- 
ted owing to the limitations imposed, at that time, by 
computer unreliability and lack of sufficient memory 
storage. 

The basic principles involved in the FGLS procedure 
are described in this paper. The topics reviewed are 
implementation of the Gauss-Seidel procedure, 
optimization of the reflection processing and storage 
requirements, and incorporation of subsidiary restraints 
and rigid-body constraints into the general method. 

Implementation of the Gauss-Seidel method in SFLS 
refinement 

In principle, the structure factor and derivative contri- 
butions to the normal equations can be obtained by 
making the major processing loop range either over the 
reflections (all atoms would contribute to the 'active' 
reflection) or over the atoms (all reflections would be 
treated for the 'active' unique atom). The latter scheme 
can be made computationally much faster than the 
former, but has significantly greater requirements for 
storage, either core memory or auxiliary store. The 
latter scheme does not lend itself to the formation of the 
full normal matrix, nor to a block containing more than 
the parameters for one unique atom (unless the atom is 
contributing to the block as a member of a rigid group 
with the parameters in the matrix and vector correspon- 
ding to that group), since the derivatives for an atom 
are known only when that atom is 'active'. For a block- 
diagonal or Gauss-Seidel block refinement, the scheme 
is ideal. 

The Gauss-Seidel algorithm is an iterative method of 
solving systems of linear and non-linear equations by 

solving the equations in a sequential fashion while using 
the latest estimate of each unknown (Carnahan, Luther 
& Wilkes, 1969). This method may be shown to 
converge for any positive definite matrix. The process 
may be converted into a block process (Rollett, 1965) 
by solving for the new estimates of a set of parameters 
corresponding to a block of equations, usually by direct 
solution of the small set of simultaneous equations for 
the block. As for most methods of solving simultaneous 
equations, shift ('fudge' or damping) factors may be 
used to ensure convergence. Although these shift 
factors are less than 1.0 for most methods, the optimal 
value for the Gauss-Seidel procedure is generally 
greater than unity (Rollett, 1965). Sparks (1961) found 
optimal convergence with a shift factor of 1.53. 

A simplified flow diagram of the FGLS procedure is 
outlined in Fig. 1. The outermost loop is over the 
atoms, where the pointers IAT1 and IAT2 indicate the 
first and last atoms, respectively, to be refined in the list 
of unique atoms. The processing within the atom loop 
begins with the calculation and accumulation of the 
structure factor and derivative contributions of atom i 
to all reflections, then the parameter shifts are deter- 
mined, displayed and applied, and finally the structure 
factors are updated to reflect the applied shifts. This 
process is repeated until the last atom in the list has 
been refined. A new overall scale factor is computed to 
complete the cycle. In actual practice, the overall scale 
factor may be updated as desired within the cycle. 

Optimization of reflection processing and storage 

To make the processing efficient within the atom loop, 
it is important to treat the reflection data in an ordered 
sequence with respect to their Miller indices (Ahmed & 
Cruickshank, 1953; Burnett & Nordman, 1974). A 
program flowchart based on the procedures used in the 
FGLS program is given in Fig. 2. This diagram 
assumes that the reflections have been sorted in 
ascending order of hkl with h varying slowest and l 
varying fastest. Within the atom loop, the structure 
factor and derivative contributions from atom i and 

[S~art] 

< ' l .  = IAT1, IAT2 > 

~ Calculote structure factor and derivative I 
contributions from atom 4, for this reflection 

.I Calculate & apply shifts to parameters of atom ~,1 

i [Correct structure factors for new atom parameters I 

]Updat . . . . . .  II scale factor I 

[End] 

Fig. 1. Basic flow diagram for Gauss-Seidel least-squares refine- 
ment. 
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symmetry-related atoms are computed for each reflec- 
tion in turn while using the reflection indices h, k and l 
as the loop indices. The values of the index limits and 
the reflection-present flag, IS, for each reflection within 
those limits are obtained from the array ISTAB in a 
sequential manner. If IS is minus one, the reflection is 
not in the data, and processing moves to the next 
reflection. Otherwise, the reflection pointer is incre- 
mented, and the structure factor and derivative contri- 
butions are calculated and accumulated. The partial 
contributions to A c and B c are stored in the arrays AP 
and BP, respectively. After all reflections have been 
processed the parameter shifts for atom i are deter- 
mined and displayed. Subsidiary conditions such as 
bond-length or thermal-parameter restraints may be 
included at this stage in the derivative matrix and 
vector for the shift determ]nation (Waser, 1963). If the 
shifts are to be applied, the atom parameters are 
adjusted and the structure factors updated by subtract- 
ing out the old contributions AP and BP and adding in 
the new. After the atom loop has been completed, a 
new overall scale factor is calculated if shifts have been 
applied. 

The array ISTAB has been devised to facilitate the 
et~cient processing and storage of reflection data. An 
ISTAB structure consistent with the h k l  looping of Fig. 
2 is 

where each parenthetical expression must be evaluated 
for the ranges of the indices whose minimum and 
maximum values precede the expression. Thus, for a 
given h and k, there would be values of IS for LMIN, 
LMIN + 1 . . . .  , LMAX. If a reflection is present, IS 
equals 1000 (sin 0/2) 2 and is used as a pointer into the 
scattering-factor table for the atom. Reflection data, 
such as F o, A~, AP, etc., are stored in separate linear 
arrays in an order defined by the appearance of their 
h,k , !  in the ISTAB array. Although the dimension of 
the ISTAB array must be somewhat larger than the 
number of reflections in core memory, the other data 
array dimensions need not exceed that number. If the 
reflection data are more numerous than is possible or 
economical to hold in core memory, the data may be 
subdivided into manageable blocks, each with its own 
ISTAB array, to be input at 7 concurrent with the data 
block. The ISFLAG is a flag to indicate the end of the 
reflection blocks to be processed. 

Optimization of the calculations of the structure 
factor and derivative contributions for atom i is 
dependent on the nature of the atom and the space- 
group symmetry. As discussed by Ahmed & 
Cruickshank (1953) for structure factor calculations, if 
the atom is assumed to have isotropic thermal 
behavior, it may be possible to factor out the depen- 

HMIN,HMAX,(KMIN,KMAX,(LMIN,LMAX,(IS))),ISFLAG, 

[Start of cyc le ] -~ - , I  Obtoln4. atOmgrouppOinterSdependentlAT1 quantities. & IAT2 for subset ] of atoms to be refined in this poss. If 
this subset is to be refined as a group. 

~, == IAT1, IAT2 ~> initialize 
$ 

Initialize quantities dependent on ~om ~, & symmetry 
re ated atoms. Clear atom derivative arrays. 

$ 
~ - ~ 1  Obtain first HKL block. ] J Obtain next HKL block. J 

Inltioflze reflection pointers. 
$ 

< .  - HMIN. H ~ X  >"10btaln KMIN & K ~ X  for this H 1 
d $ 

< K  = KMJN. K ~ x  >- lobtoin  LMI, ~ ,MAX for t h i s .  & K 1 
8 $ 

< L  "= LMIN. LIvlAX >-*[Obtain IS for this HKL. ] 

Increment reflection po~nter. 
Evolt.4lte and store partial 
contributions to A & B. 
Calculate & accumulate 
derivative contributions. 

( Lost HKL block? ) no 
yes ~, 

Evaluate & display parameter shifts for atom ¢ including [ 
contributions from o4l specified restraints. I 

~ l A d ~ u s t  atom ~ parameters. 
no no 

l  °i or,oo  ,o, , f l ° 
I l UPdate scale facto . . . .  quired. J I 

As needed, evaluate & apply group parameter shifts, adjust [ 
group atom para~neters, display shifts. Update structure I 
factors and overall scats factor as required. J $ 

[End of cycle],~-----~ 
Fig. 2. Flow diagram for the FGLS routine. 

dence of the structure factor on an index, say /. This 
index should be used as the innermost loop since tables 
of cos 2nlz  i and sin 2nlz  i (for all l) may be prepared. If 
no index may be factored out, or if the atom is assumed 
to have anisotropic thermal behavior, the method of 
Burnett & Nordman (1974) would be appropriate. 
They accumulate the trigonometric arguments by 
integer addition and use these arguments, modulo the 
period of the stored trigonometric table, as subscripts 
into that table. The arguments for the anisotropic 
thermal-factor expression may be accumulated in a 
similar fashion. In any case, any expression should be 
evaluated outside of loops within which the expression 
does not vary. 

Parameter restraints and rigid-body constraints in 
FGLS 

Waser (1963) recommended treating the desired 
subsidiary conditions as additional observational 
equations. If distances between certain pairs of atoms 
are to be restrained, for example, the function to be 
minimized is 

Q2= Q1 + ~. wq(d'q-dq) 2, (1) 
q 

where 

Q~ = ~h Wh(IF°'hl - GIFc'hl)2 (2) 
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and the second term is the sum over the q subsidiary 
distance restraints of the weighted squares of the 
distance residuals. The d,~ is the assumed 'ideal' 
distance between a specified pair of atoms (this may 
correspond to a bond length, bond angle or a minimum 
distance between non-bonded atoms) and dq is the dis- 
tance calculated from the model. The wq is the weight 
to be assigned to the particular equation and is given by 
Pawley (1972) as 

wq= Q1/[a~(M- N)], (3) 

where aq is the standard deviation assigned to the qth 
restraint, M is the number of structure factor obser- 
vations included in Q,, and N is the number of 
parameters varied in the block. Consistent with the 
Gauss-Seidel  algorithm, restraints to parameters al- 
ready refined in the cycle are given more weight than 
those to parameters as yet unrefined in the cycle. 

When the internal geometry of a group of atoms is to 
be strictly maintained as suggested by Scheringer 
(1963), we have a constrained or 'rigid' group. The 
location and orientation of this rigid group within the 
unit cell may be specified by six parameters (three 
translational and three rotational). The fractional 
coordinates, x~, of atom i in the group j may be related 
to its coordinates, X i, in a convenient Cartesian 
reference frame by the expression 

x i = tj + URj X i, (4) 

where tj is the translation vector in fractional coordin- 
ates of the origin of the group relative to the unit-cell 
origin, U is the transformation matrix from the 
Cartesian to the fractional crystallographic coor- 
dinates and 

(2) For the group rotation 

c~Fc - ~-"~ OFc (gxu' (k = 1, 2, 3), (7) 
O~oj ~zT. Oxik &oj 

and similarly for 0j and pj. 
(3) For the group overall isotropic thermal factor, 

OFc_ X" OFc 
(8) 

where the summation of i ranges over all atoms in the 
group j.  As formulated in (5), a singular matrix of 
normal equations will result if 0 is near 90 or 270 °. To 
reduce the chance of this difficulty, the FGLS pro- 
cedure utilizes a revised form of (4) given by the 
expression 

X t = tj + URj R o X l, (9) 

where R 0 has the same form as (5) with the angles ~P0 = 
00 = P0 = 0. Thus, R0 is the identity matrix and the 
derivatives with respect to the 'group'  angles ~P0, 00 and 
P0 are orthogonal to each other. After the shifts have 
been determined for these angles, the product R jR 0 is 
formed and the new values of ~p, 0 and p can be ob- 
tained by inspection of (5). The evaluation of the 
angular shifts with respect to the matrix R 0 permits the 
group to be oriented as desired in the Cartesian 
reference frame for analysis of group motion or 
restriction of angular parameters for linear groups. 

Although incorporated in the working program, the 
rigid-group option is not explicitly shown in Fig. 2. In 
this mode the Gauss-Seidel  updating of structure 
factors for each atom in turn must be suspended until 

cos rp cos p - sin ~0 sin 0 sin p 

= | sin rp cos p + cos rp sin 0 sin p 

\ - c o s  0 sin p 

- s i n  0 cos 0 

cos ~0 cos 0 

sin 0 

cos ~p sin p + sin ~p sin 0 cos ~ \  

) sin ~p sin p - cos ~p sin 0 cos 

cos 0 cos p 

(5) 

is the rotation matrix (Doedens, 1970) corresponding 
to successive rotations of the group, first by the angle ~p 
about the Cartesian Z axis, next by 0 about the new 
Cartesian X axis, and finally by p about the new 
Cartesian Y axis. Once a U matrix appropriate to the 
crystal system has been chosen, the xi may be 
expressed in terms of the X~ by (4) and vice versa. 

The quantity Q2 in (1) is to be minimized with 
respect to the parameters of group j.  The derivatives of 
F c with respect to the group parameters are obtained 
from the individual-atom derivatives by application of 
the chain rule (Doedens, 1970). 

(1) For the group translation 

aFc_ OFc 
~ '  (k = 1, 2, 3). (6) 

Oxi---- ~ Otjk 

all atom shifts within the group have been determined. 
At a in Fig. 2 the atom list pointers IAT 1 and IAT2 are 
set to indicate the first and last atoms which constitute 
the group. The group orientation angles and translation 
vectors are obtained, and the group derivative arrays 
are cleared. At fl within the atom loop, the Cartesian 
coordinates X l are calculated from the fractional 
crystal coordinates x i by the inverse of (9), and the 
factors required to convert the individual-atom 
derivatives to group derivatives are calculated. Within 
the reflection loop, the normal equations corres- 
ponding to the individual atom as well as the rigid body 
are formed. This allows the 'free' shifts of atom i to be 
calculated and displayed to assist in the detection of 
false atoms or conformational distortions. At 6 the loop 
over all atoms in the group is complete, and group 
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shifts may be calculated and applied. If any shifts were 
applied, the structure factors are updated. At e the 
processing of group j is complete and program flow 
jumps back to a to process group j + 1, if necessary. 

Application to protein structure refinement 

In order to evaluate the performance of the program, 
and to explore the effect of varying the softness of 
distance restraints, a moderate-resolution structure 
refinement of the semiquinone form of Clostridium M P  
flavodoxin (Smith, Burnett, Darling & Ludwig, 1977) 
was carried out. 

The starting model consisted of 1003 atoms which 
had been fitted to the density of the isomorphous- 
replacement map by real-space refinement (Diamond, 
1971). The remaining 101 atoms, in the ll04-atom 
protein molecule, were not observed in the map density, 
but were positioned consistent with the amino acid 
sequence information and standard stereochemical 
considerations. These 101 atoms were assigned zero 
occupancy, so that they could be carried along in the 
group refinement of the rest of the protein, without 
exerting any direct influence on the calculated structure 
factors. Approximate local stereochemistry was im- 
posed on the model (Levitt, 1974) prior to the least- 
squares refinement. 

4660 reflections with I > 2tr(I) within the resolution 
limits 2.5 to 5.0 A were used in the refinement. 
Although data to 1.8 A have been collected (Smith et 
al., 1977) the 2.5 A limit was chosen to save 
calculation time, and also to enhance the significance of 
the restraints being tested. 

Groups of atoms in chemically known geometry 
were treated as rigid. These included short side chains, 
three (e.g. Met) or four (Arg, Glu etc.) atoms at the 
ends of flexible side chains, and the planar groups in 
Phe, Trp, etc. The peptide O=C--N groups were 
taken as rigid. Elastic restraints were applied to all pairs 
of nearest- and second-nearest-neighbor atoms not 
within the same rigid group. Thermal B restraints were 
applied between all nearest-neighbor atoms, including 
pairs wholly within the same rigid group. The thermal 
restraints were applied only when the difference 
between two neighboring B values exceeded a threshold 
value of 3.0 A 2, 

An auxiliary program identifies the rigid groups and 
generates the restraint information for each restrained 
atom pair in the polypeptide chain. This restraint infor- 
mation includes 'ideal' interatomic distances and 
nominal tr values, i.e. elastic constants, assigned to the 
distance constraints. Threshold values, AB, and tr 
values for thermal-parameter restraints are also 
included. 

A rescaling of the restraint tr values is generally done 
before each refinement cycle. Since the refinement 
proceeds from one atom (or rigid group) to the next, it 
is advantageous to allow more softness in f o r w a r d  
restraints, that is, in restraints from the active atom to 
atoms not yet refined, than in backward restraints. It is 
important that distance o's be chosen sufficiently high 
in the beginning of the refinement, since undue insis- 
tence on maintaining ideal bond lengths will slow down 
the refinement of a misplaced chain segment. 

The progress of four cycles of refinement is shown in 
Table 1. The shift factors were chosen as 1.2 for both 
coordinates and thermal parameters. An analysis of 
parameter shifts in successive cycles indicated that a 
somewhat higher value would have been optimal, in 
qualitative agreement with Sparks's (1961) finding. 

Reflection weights were taken as w = (1 + CF2o) -~ 
with c chosen so as to downweight the terms in (2) 
containing the upper quintile of F o values by an average 
w of about 0.25. This gave a nearly even distribution of 
(w(AF)  2) as a function ofFo 2. 

Restrained refinement at low resolution necessarily 
involves a balance between structure factor agreement 
and adherence to ideal stereochemistry. This balance is 
controlled by the choice of the standard deviations aq 
assigned to the restraints [equation (3)]. The aq values 
used for nearest-neighbor distance restraints are given 
in columns 2 and 3 of Table 1. Second-nearest-neigh- 
bor distance a's were taken as 1.2 times as large, 
thermal B restraint o's as 6.0 A 2 with a threshold AB of 
3.0 A 2. 

The actual deviation from ideal bond lengths is 
shown in column 4, and the reciprocal-space measures 
of agreement in the last two columns. As shown in 
columns 5 and 6, the refinement has essentially 
converged in three cycles. 

The computing time was 9 min per refinement cycle 
on an Amdahl 470/V6 computer, or 1.1 x 10 -4 s per 
atom-reflection. These values include structure factor 

Table 1. Refinement statistics 

Bond restraint tr (A) 
Cycle forward back 

0 - -  - -  

1 0.8 0.40-0.13 
2 0.40-0.13 0.13-0.05 
3 0-13-0.05 0.05-0.03 
4 0.03 0.03 

Bond length 
r.m.s. Average atom shift (A) 

(d-  d') (A) cycle cumulative 

0.012 - - 
0.090 0.241 0.241 
0.070 0.096 0.251 
0.051 0.056 0-251 
0.037 0.042 0.248 

Relative 
r w(dF) 2 R 

309 0.350 
179 0.265 
152 0-245 
152 0.244 
156 0.247 
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updating, an integral part of the refinement cycle. 
Structure factor computation alone requires 2.1 x 10 -5 
s per atom-reflection. 

The completion of the model of the protein molecule 
and associated solvent, and the extension of the refine- 
ment to 1.8 A resolution will be discussed in a separate 
publication. 

The program is written in Fortran and includes 
documentation and patches for most common space 
groups. It is available from either author. Included in 
the package are programs for generating the reflection 
and ISTAB files, blocked as needed, and a program for 
automatic generation of parameter restraint files for 
polypeptides. 

This work was supported by grant GM15259 from 
the National Institutes of Health, US Public Health 
Service. 
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Short-range ordering in PbMgl /3Nb2 /30  3. By H. BRIGI'VI'E KRAUSE, Department of Physics, Northern Illinois 
University, DeKalb, IL 60115, USA and J. M. COWLEY and JOHN WHEATLEY, Arizona State University, Tempe, Arizona 
85281, USA 

(Received 21 August 1978; accepted 21 May 1979) 

Abstract 

High-resolution electron-microscope images in conjunction 
with selected-area electron diffraction were used to investi- 
gate the short-range order in PbMg~/3Nb2/303. Intensity 
fluctuations of the [110] image indicated ordered domains 
extending over about 20 to 50 /~,. Decomposition phases 
were observed. 

PbMgl/3 Nb2/30 3 crystallizes in the cubic perovskite structure 
with a lattice constant of 4.04/~, (Ismailzade, 1961). The Pb 

0567-7394/79/061015-03501.00 

atoms are generally believed to occupy the A metal positions 
while the Mg and Nb atoms are assumed to be distributed in 
the B metal positions. The questions of whether or not 
ordering of the B atoms takes place has previously been 
investigated with no conclusive results (Krause & Gibbon, 
1971)" X-ray powder measurements showed no superlattice 
reflections while selected-area electron diffraction yielded 
diffuse superlattice points in the body-centered position of 
the reciprocal unit cell. These results suggested either short- 
range ordering of the Mg and Nb atoms or slight distortions 
of the cubic unit cell associated with ferroelectric behavior. 
Electron microscopy imaging methods have now been used 
to distinguish between these possibilities. 
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